Abstract
Implementing frequency-encoded photonic linear transformations can be of significant interest not only for quantum information processing and machine learning hardware accelerators, but also for optical signal processing, communications, and spectrotemporal shaping of light. We present a flexible, reconfigurable architecture to implement such arbitrary linear transformations for photons using the synthetic frequency dimension of dynamically modulated microring resonators. Inverse design of the coupling between the frequency modes enables arbitrary scattering matrices to be scalably implemented with high fidelity, allowing for nonreciprocal frequency translation, unitary and nonunitary transformations. Our results introduce new functionalities for linear transformations beyond those possible with real-space architectures that are typically time-invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.