Abstract

Quantitative phase imaging (QPI) has made a tremendous contribution to microbiology and medicine. Recently, QPI has been used for in-vitro fertilization optimization, and cell culture monitoring, among others. These accomplishments have been made using phase measurements. QPI is based on well-known optical metrology techniques. The challenge in QPI is developing phase measuring systems that can be used in the medical or microbiological environment. For such applications, two-beam interferometers are not suitable. In this context, we propose a common path interferometric system that provides quantitative phase measurements. The method combines the diffraction phase microscopy with the arbitrary phase shifting technique. The phase-shifted images are obtained by means of a shifted diffraction grating and an amplitude filter that allows interference between the undiffracted light and the first spatial frequency at the Fourier plane. The results show a reduction in the noise of the resultant phase when using the arbitrary phase shifting technique. This system can potentially be used to quantify nanoscale motions in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.