Abstract

A general arbitrary order recursive gradient formulation is presented for meshfree approximation. According to this method, an nth order recursive meshfree gradient is formulated as an interpolation of the (n − 1)th order gradients by standard first order meshfree gradients, which finally can be expressed as a successive multiplication of standard first order meshfree gradients. This formulation avoids the complex and costly computation of conventional high order derivatives of meshfree shape functions. One crucial ingredient of the proposed methodology is that the resulting recursive meshfree gradients with a pth degree basis function not only meet the conventional pth order consistency conditions for standard gradients, but also satisfy (p + 1)th to (p + n − 1)th extra high order consistency conditions. This important property leads to superconvergent meshfree collocation algorithms and here we focus on the classical fourth order Kirchhoff plate problems. An accuracy analysis of the proposed recursive gradient meshfree collocation formulation for Kirchhoff plates reveals that superconvergence is simultaneously achieved for both even and odd degrees of basis functions. More specifically, two and four additional orders of accuracy are respectively gained by the proposed method for even and odd degree basis functions, compared with the standard meshfree collocation scheme. Furthermore, the extra high order consistency conditions of recursive meshfree gradients enable superconvergent meshfree collocation analysis of Kirchhoff plates using low order basis functions of less than 4th degree, while the standard meshfree collocation approach requires at least a 4th degree basis function to maintain convergence. The accuracy and efficiency of the proposed methodology are holistically demonstrated by numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.