Abstract

This paper contains two major contributions. First we derive, following the discrete de Rham (DDR) and Virtual Element (VEM) paradigms, pressure-robust methods for the Stokes equations that support arbitrary orders and polyhedral meshes. Unlike other methods presented in the literature, pressure-robustness is achieved here without resorting to an H(div)-conforming construction on a submesh, but rather projecting the volumetric force onto the discrete H(curl) space. The cancellation of the pressure error contribution stems from key commutation properties of the underlying DDR and VEM complexes. The pressure-robust error estimates in hk+1 (with h denoting the meshsize and k≥0 the polynomial degree of the DDR or VEM complex) are proven theoretically and supported by a panel of three-dimensional numerical tests. The second major contribution of the paper is an in-depth study of the relations between the DDR and VEM approaches. We show, in particular, that a complex developed following one paradigm admits a reformulation in the other, and that couples of related DDR and VEM complexes satisfy commuting diagram properties with the degrees of freedom maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.