Abstract

We demonstrate a Complex Waveguide Bragg Grating (CWBG) which can be designed to generate an arbitrary transmission spectrum. A comprehensive design method, based on the Layer Peeling/Adding algorithm, is developed to realize the grating on a silica-on-silicon platform. The CWBG has a simple one-layer waveguide structure for ease of fabrication. A spectral precision better than ±0.1 nm and a suppression ratio between 15 dB and 33 dB are achieved for a transmission spectrum consisting of 20 randomly distributed spectral notches with a 3 dB width of 0.3–0.4 nm. Among the CWBG's various potential applications, we highlight its use for eliminating OH emission lines from the Earth's atmosphere for ground-based astronomical observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.