Abstract
The powerful wavefront manipulation capability of metasurfaces originates from their subwavelength or deep subwavelength elements with designable optical responses, especially phase responses. However, they usually suffer from performance degradation as the spatial phase gradient is large. To solve this issue, we propose an accurate and efficient nonlocal diffraction engineering mechanism to tailor an arbitrary large-gradient wavefront utilizing superwavelength-scale elements. The fast-varying phase profile is cut into segments according to 2 π zones rather than subwavelength discretization. Each phase segment is accurately implemented by precisely tailoring the diffraction pattern of the element, where diffraction angles, efficiencies, and phases are controlled simultaneously. As proof of the concept, high numerical aperture cylindrical metalenses are designed using this method and experimentally validated at the terahertz band. The cylindrical metalens is further extended to a full-space metalens, which enables high-quality subwavelength imaging with resolved details of 0.65 λ . The proposed mechanism offers an efficient way to capture the fast-varying wavefront using relatively coarse geometries with new physical insights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.