Abstract

AbstractThe arbitrary Lagrangian–Eulerian (ALE) description in non‐linear solid mechanics is nowadays standard for hypoelastic–plastic models. An extension to hyperelastic–plastic models is presented here. A fractional‐step method—a common choice in ALE analysis—is employed for time‐marching: every time‐step is split into a Lagrangian phase, which accounts for material effects, and a convection phase, where the relative motion between the material and the finite element mesh is considered. In contrast to previous ALE formulations of hyperelasticity or hyperelastoplasticity, the deformed configuration at the beginning of the time‐step, not the initial undeformed configuration, is chosen as the reference configuration. As a consequence, convecting variables are required in the description of the elastic response. This is not the case in previous formulations, where only the plastic response contains convection terms. In exchange for the extra convective terms, however, the proposed ALE approach has a major advantage: only the quality of the mesh in the spatial domain must be ensured by the ALE remeshing strategy; in previous formulations, it is also necessary to keep the distortion of the mesh in the material domain under control. Thus, the full potential of the ALE description as an adaptive technique can be exploited here. These aspects are illustrated in detail by means of three numerical examples: a necking test, a coining test and a powder compaction test. Copyright © 2001 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.