Abstract

The arbitrary Lagrangian-Eulerian (ALE) is a hybrid finite element formulation, which is developed through combining modern algorithms for Lagrangian hydrodynamics, meshing technology and remap methods developed for high-resolution Eulerian methods. In automotive, simulation of dynamic stress and fatigue life of fuel tank straps is a complex problem. Typically, a fuel tank is held with fuel tank straps. Being a complex problem with overall movement lying in the domain of nonlinear large rotation dynamics, the involved fuel sloshing behaviour causes more intrication. The objective is initiated to investigate the advantage of ALE method in simulating fuel sloshing through fuel tank and fuel tank strap movement under proving ground conditions, using the nonlinear large rotation dynamic method in RADIOSS. Afterward, the fatigue life of fuel tank straps is predicted through nCode DesignLife, resulting in good correlation with test by accurate prediction of the crack initiation locations and sequence in the fuel tank straps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.