Abstract

ABSTRACT A finite element numerical model is proposed for the simulation of two-dimensional turbidity currents. Time-dependent, layer-averaged governing equations—a hyperbolic system of partial differential equations—are chosen for the numerical analysis. The Arbitrary Lagrangian-Eulerian description is introduced to provide a computational framework for the moving boundary problem. A dissipative-Galerkin formulation is used for the spatial discretization, and a second-order finite difference scheme is used for the time integration. A deforming-grid generation technique is employed to cope with the moving boundary of a propagating front. In order to estimate the bed elevation change by the turbidity current, the double-grid finite element technique is used. The developed numerical algorithm is applied to the simulation of a laboratory experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.