Abstract

A new method to determine the arbitrary electron energy distribution function (EEDF) from the optical emission spectroscopic measurement in atmospheric-pressure plasma is introduced. The optical emission spectroscopy (OES) continuum emission spectrum, dominated by electron-neutral bremsstrahlung radiation, is analyzed to inspect the usefulness of the conventional OES measurement range for EEDF determination. The EEDF is reconstructed from the OES continuum radiation spectrum by applying machine learning to solve the bremsstrahlung emissivity equation inversely. Through iterative statistical analysis, the presented genetic algorithm can locate the EEDF reliably. Verification of the algorithm shows that theoretical Maxwellian and Druyvesteynian EEDFs can be partially reconstructed from a realistic OES measurement range. Furthermore, preliminary experimental EEDF results of an argon dielectric barrier discharge (DBD) OES measurement are given. The electron energy range and resolution of the determined EEDF are discussed. The results in this paper show potential for accurate determination of the arbitrary EEDF in atmospheric-pressure plasma using simple OES equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.