Abstract

We experimentally demonstrate a class of non-diffracting beams with state of polarization (SoP) and intensity that can both be controlled along the propagation direction. The beams are composed of a superposition of equal frequency co-propagating Bessel beams (BBs) with different transverse and longitudinal wavenumbers. The BBs are weighted by suitable complex coefficients derived from closed-form analytic expressions. The desired polarization states (i.e., linear, radial, azimuthal and elliptical) are each independently encoded onto a set of BBs with the suitable polarizations. For experimental generation, the resulting field is decomposed into two orthogonal polarizations (horizontal and vertical). Via constructive (and destructive) interference of BBs, specific SoPs can be designed to switch on (and off) during propagation. This effectively alters the resultant SoP and intensity of the beam throughout propagation. We envision our proposed method to be of great interest in many applications, such as optical tweezers, atom guiding, material processing, microscopy, and optical communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.