Abstract

The behavior of quantum dust ion acoustic soliton and shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions, and stationary negative dust grains are studied, using arbitrary amplitude approach. The effect of dissipation due to viscosity of ions is taken into account. The numerical analysis of Sagdeev potential for small value of quantum diffraction parameter (H) shows that for chosen plasma, only compressive solitons can exist and the existence domain of this type of solitons is decreased by increasing dust density (d). Additionally, the possibility of propagation of both subsonic and supersonic compressive solitons is investigated. It is shown that there is a critical dust density above which only supersonic solitons are observed. Moreover, increasing d leads to a reduction in the existence domain of compressive solitons and the possibility of propagation of rarefactive soliton is provided. So, rarefactive solitons are observed only due to the presence of dust particles in this model quantum plasma. Furthermore, numerical solution of governed equations for arbitrary amplitude shock waves has been investigated. It is shown that only compressive large amplitude shocks can propagate. Finally, the effects of plasma parameters on these structures are investigated. This research will be helpful in understanding the properties of dense astrophysical (i.e., white dwarfs and neutron stars) and laboratory dusty plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.