Abstract
Random coding theorems are proved for discrete memoryless arbitrarily varying channels (AVCs) with constraints on the transmitted codewords and channel state sequences. Two types of constraints are considered: peak (i.e. required for each n-length sequence almost surely) and average (over the message set or over an ensemble). For peak constraints on the codewords and on the channel state sequences, the AVC is shown to have a (strong) random coding capacity. If the codewords and/or the channel state sequences are constrained in the average sense, the AVCs do not possess (strong) capacities; only epsilon -capacities are shown to exist.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.