Abstract

Under an appropriate oscillating behavior of the nonlinear term, the existence of a determined open interval of positive parameters for which an eigenvalue non-homogeneous Neumann problem admits infinitely many weak solutions that strongly converges to zero, in an appropriate Orlicz–Sobolev space, is proved. Our approach is based on variational methods. The abstract result of this paper is illustrated by a concrete case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.