Abstract
We develop a theory of robust pricing and hedging of a weighted variance swap given market prices for a finite number of co-maturing put options. We assume the put option prices do not admit arbitrage and deduce no-arbitrage bounds on the weighted variance swap along with super- and sub-replicating strategies that enforce them. We find that market quotes for variance swaps are surprisingly close to the model-free lower bounds we determine. We solve the problem by transforming it into an analogous question for a European option with a convex payoff. The lower bound becomes a problem in semi-infinite linear programming which we solve in detail. The upper bound is explicit. We work in a model-independent and probability-free setup. In particular, we use and extend Follmer's pathwise stochastic calculus. Appropriate notions of arbitrage and admissibility are introduced. This allows us to establish the usual hedging relation between the variance swap and the “log contract” and similar connections for weighted variance swaps. Our results take the form of a FTAP: we show that the absence of (weak) arbitrage is equivalent to the existence of a classical model which reproduces the observed prices via risk-neutral expectations of discounted payoffs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.