Abstract
We propose ARAMIS, a solution to provide real-time “x-ray see-through vision” of a patient’s internal structure to the surgeon, via an optical see-through head-mounted display (OST-HMD), in minimally invasive laparoscopic surgery. ARAMIS takes input imaging from a binocular endoscope, reconstructs a dense point cloud with a GPU-accelerated semi-global matching algorithm on a per-frame basis, and then wirelessly streams the point cloud to an untethered OST-HMD (currently, Microsoft HoloLens) for visualization. The OST-HMD localizes the endoscope distal tip by fusing fiducial-based tracking and self-localization. The point cloud is rendered on the OST-HMD with a custom shader supporting our data-efficient point cloud representation. ARAMIS is able to visualize the reconstructed point cloud (184k points) at 41.27 Hz with an end-to-end latency of 178.3 ms. A user study with 25 subjects, including 2 experienced users, compared ARAMIS to conventional laparoscopy during a peg transfer task on a deformable phantom. Results showed no significant difference in task completion time, but users generally preferred ARAMIS and reported improved intuitiveness, hand-eye coordination and depth perception. Inexperienced users showed a stronger preference for ARAMIS and achieved higher task success rates with the system, whereas the two experienced users indicated a slight preference for ARAMIS and succeeded in all tasks with and without assistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.