Abstract

AbstractThe main purpose of the paper is to formulate a probabilistic model for Arakelov class groups in families of number fields, offering a correction to the Cohen–Lenstra–Martinet heuristic on ideal class groups. To that end, we show that Chinburg’s $$\Omega (3)$$ Ω ( 3 ) conjecture implies tight restrictions on the Galois module structure of oriented Arakelov class groups. As a consequence, we construct a new infinite series of counterexamples to the Cohen–Lenstra–Martinet heuristic, which have the novel feature that their Galois groups are non-abelian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.