Abstract

Current treatments for deep tissue burns are limited, and most serve only to enhance hydration or prevent bacterial growth. This leaves burn healing dependent on slow natural processes to debride the wound and reestablish the epidermal and dermal layers of the skin. Infections are well known to destabilize this process through a variety of mechanisms, most notably through increased inflammation and the resulting oxidative stress. In this study, we show that ARAG (an antioxidant-rich antimicrobial gel) can suppress the growth of multiple bacteria commonly found to infect burns (Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, and Staphylococcus aureus). This inhibition is comparable to that conferred by silver ion release from burn dressings such as Mepilex-Ag. We further show, using a porcine model for deep partial-thickness burns, that ARAG allows for enhanced wound healing over Mepilex-Ag, the current standard of care. Histological findings indicate this is likely due to increased wound debridement and dampening of late inflammatory processes, leading to more balanced physiologic healing. Taken together, these findings show promise for ARAG as a superior alternative to the current standard of care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.