Abstract

Fatty acids and their derivatives play a role in the response to retinal injury. The effects of dietary arachidonic acid (AA) supplementation on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration was investigated in young Lewis rats during the gestational, lactational and post-weaning periods. Dams were fed 0·1, 0·5 or 2·0% AA diets or a basal (< 0·01% AA) diet. On postnatal day 21 (at weaning), male pups received a single intraperitoneal injection of 50 mg MNU/kg or vehicle, and were fed the same diet as their mother for 7 d. Retinal apoptosis was analysed by the terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labelling (TUNEL) assay 24 h after the MNU treatment, and retinal morphology was examined 7 d post-MNU. Histologically, all rats that received MNU and were fed the basal and 0·1% AA diets developed retinal degeneration characterised by the loss of photoreceptor cells (disappearance of the outer nuclear layer and the photoreceptor layer) in the central retina. The 0·5 and 2·0% AA diets rescued rats from retinal damage. Morphometrically, in parallel with the AA dose (0·5 and 2·0% AA), the photoreceptor ratio significantly increased and the retinal damage ratio decreased in the central retina, compared with the corresponding ratios in basal diet-fed rats. In parallel with the increase in serum and retinal AA levels and the AA:DHA ratio, the apoptotic index in the central retina was dose-dependently decreased in rats fed the 0·5 and 2·0% AA diets. In conclusion, an AA-rich diet during the gestation, lactation and post-weaning periods rescued young Lewis rats from MNU-induced retinal degeneration via the inhibition of photoreceptor apoptosis. Therefore, an AA-enriched diet in the prenatal and postnatal periods may be an important strategy to suppress the degree of photoreceptor injury in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.