Abstract

The present study investigated the effect of arachidonic acid on the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, presumably heteromeric receptors formed of GluR1, GluR2, and GluR3, expressed in Xenopus oocytes. Arachidonic acid (10 μM) potentiated currents through receptors expressing GluR1 and 3 (GluR1,3) to 170% of basal level during initial 20 min following application, being still evident at 60-min washing-out of the drug, while it never or little enhanced currents through receptors expressing GluR1 and 2 (GluR1,2) or GluR1, 2, and 3 (GluR1,2,3) (110% 30 min after treatment). The effect of arachidonic acid on GluR1,3 currents was not observed in Ca 2+-free extracellular solution, and the potentiation was blocked by either KN-93, a selective Ca 2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, or NP217, an active CaMKII inhibitor peptide, when co-expressed with the receptors. In contrast, the protein synthesis inhibitor, cycloheximide, the selective inhibitor of cAMP-dependent protein kinase (PKA), H-89, the selective inhibitors of protein kinase C (PKC), PKCI and GF109203X, the mitogen-activated protein (MAP) kinase kinase inhibitor, PD98059, or the inactive CaMKII inhibitors, KN-92 and NP218, had no effect on the currents. In the assay of intracellular calcium mobilizations, Ca 2+ influx in response to receptor activation was greatest with receptors formed in oocytes expressing GluR1,3. The results of the present study indicate that arachidonic acid induces a long-lasting potentiation of GluR1,3 currents, possibly as a result of the interaction with a CaMKII pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call