Abstract

Arachidonic acid (AA) has been implicated in signaling actions in several cell types including endocrine cells. In the present study, we investigated the effect of exogenous AA on GH release from dispersed pituitary cells and tried to elucidate the mechanism involved in this process. We show that AA stimulates GH release in a dose- and extracellular calcium-dependent manner. The effects of AA on cytosolic calcium concentration ([Ca2+]i) were studied using dual-emission microspectrofluorimetry in identified somatotropes. AA (1 microM) induced an increase in intracellular calcium concentration ([Ca2+]i) by stimulating Ca2+ influx through dihydropyridine-sensitive, voltage-dependent calcium channels. In these cells, the effects of AA were only reduced by the inhibition of protein kinase C (PKC) activity, suggesting that the fatty acid may act by both PKC-dependent and PKC-independent pathways. In order to determine whether AA metabolites were involved in the effects attributed to AA, and, if so, which ones, we inhibited the three arachidonate metabolic pathways: cyclo-oxygenase by indomethacin (50 microM), lipoxygenase by nordihydroguaiaretic acid (NGDA, 50 microM), and epoxygenase by 5,8,11, 14-eicosatetraynoic acid (ETYA, 10 microM). NGDA and ETYA reduced the effects of AA on GH release (50 and 74%, respectively) and inhibited the [Ca2+]i response, whereas indomethacin slightly potentiated both AA-induced GH release and [Ca2+]i increase. As these results suggested that lipoxygenase metabolites may be responsible for AA-induced Ca2+ influx and GH release, we tested the effects of 5-, 12- and 15-hydroperoxyeicosatetraenoic acids (5-, 12- and 15-HpETE) on [Ca2+]i and GH release. They all stimulated calcium influx and GH release in a dose-dependent manner, 12-HpETE being more potent than 5- and 15-HpETE. We conclude that lipoxygenase metabolites of arachidonic acid, particularly 12-HpETE, may be involved in the GH secretion mechanism, probably by facilitating Ca2+ influx via L-type Ca2+ channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call