Abstract

Cell biological, structural, and genetic approaches have demonstrated the presence of arabinogalactan proteins (AGPs) in the moss Physcomitrella patens and provided evidence for their function in cell expansion and specifically in the extension of apical tip-growing cells. Inhibitor studies indicated that apical cell expansion in P. patens is blocked by synthetic AGP binding beta-glucosyl Yariv reagent (betaGlcYR). The anti-(1-->5)-alpha-L-arabinan monoclonal antibody LM6 binds to some AGPs in P. patens, to all plasma membranes, and to the cell wall surface at the most apical region of growing protonemal filaments. Moreover, LM6 labeling of cell walls at the tips of apical cells of P. patens was abolished in the presence of betaGlcYR, suggesting that the localized movement of AGPs from the plasma membrane to the cell wall is a component of the mechanism of tip growth. Biochemical and bioinformatic analyses were used to identify seven P. patens ESTs encoding putative AGP core proteins from homology with Arabidopsis thaliana, Brassica napus, and Oryza sativa sequences and from peptide fragments isolated from betaGlcYR-precipitated AGPs. Gene knockout by homologous recombination of one of these genes, P. patens AGP1, encoding a classical AGP core protein, resulted in reduced cell lengths in protonemal filaments, indicating a role for AGP1 in apical cell expansion in P. patens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.