Abstract

During postembryonic plant development, cell division is coupled to cell growth. There is a stringent requirement to couple these processes in shoot and root meristems. As cells pass through meristems, they transit through zones with high rates of cell growth and proliferation during organogenesis. This transition implies a need for coordinate regulation of genes underpinning these two fundamental cell functions. Here, we report a mechanism for coregulation of cell division control genes and cell growth effectors. We identified a GCCCR motif necessary and sufficient for high-level cyclin CYCB1;1 expression at G2/M. This motif is overrepresented in many ribosomal protein gene promoters and is required for high-level expression of the S27 and L24 ribosomal subunit genes we examined. p33(TCP20), encoded by the Arabidopsis TCP20 gene, binds to the GCCCR element in the promoters of cyclin CYCB1;1 and ribosomal protein genes in vitro and in vivo. We propose a model in which organ growth rates, and possibly shape in aerial organs, are regulated by the balance of positively and negatively acting teosinte-branched, cycloidea, PCNA factor (TCP) genes in the distal meristem boundary zone where cells become mitotically quiescent before expansion and differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.