Abstract

Functional studies of CCCH-type zinc finger proteins in abiotic stress responses have largely focused on tandem CCCH-type zinc finger (TZF) genes, whereas the study of functional roles of non-TZF genes in abiotic stress responses has largely been neglected. Here, we investigated the functional roles of AtC3H17, a non-TZF gene of Arabidopsis, in salt stress responses. AtC3H17 expression significantly increased under NaCl, mannitol, and ABA treatments. AtC3H17-overexpressing transgenic plants (OXs) were more tolerant under NaCl and MV treatment conditions than the wild type (WT). atc3h17 mutants were more sensitive under NaCl and MV treatment conditions compared with the WT. The transcription of the salt stress-responsive genes in ABA-dependent pathway, such as RAB18, COR15A, and RD22, was significantly higher in AtC3H17 OXs than in WT both under NaCl-free condition and after NaCl treatment. Our results demonstrate that AtC3H17 functions as a positive regulator in salt stress response, via the up-regulation of ABA-dependent salt stress-response pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.