Abstract

N6-methyladenosine (m6A) is an internal, reversible nucleotide modification that constitutes an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the m6A cellular machinery has been described in plants at present. m6A has been identified in the genomic RNAs of diverse mammalian viruses and, additionally, viral infection was found to be modulated by the abundance of m6A in viral RNAs. Here we show that the Arabidopsis thaliana protein atALKBH9B (At2g17970) is a demethylase that removes m6A from single-stranded RNA molecules in vitro. atALKBH9B accumulates in cytoplasmic granules, which colocalize with siRNA bodies and associate with P bodies, suggesting that atALKBH9B m6A demethylase activity could be linked to mRNA silencing and/or mRNA decay processes. Moreover, we identified the presence of m6A in the genomes of two members of the Bromoviridae family, alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). The demethylation activity of atALKBH9B affected the infectivity of AMV but not of CMV, correlating with the ability of atALKBH9B to interact (or not) with their coat proteins. Suppression of atALKBH9B increased the relative abundance of m6A in the AMV genome, impairing the systemic invasion of the plant, while not having any effect on CMV infection. Our findings suggest that, as recently found in animal viruses, m6A modification may represent a plant regulatory strategy to control cytoplasmic-replicating RNA viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.