Abstract

BackgroundLeucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive.ResultsThe LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants.ConclusionsLRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0548-8) contains supplementary material, which is available to authorized users.

Highlights

  • Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs)

  • LRX3, LRX4, and LRX5 are conserved LRR-extensin proteins LRX3, LRX4, and LRX5 proteins show the typical structure of leucine-rich repeat (LRR)-extensins (LRXs), including an N-terminal LRR domain and a C-terminal extensin (HRGP) domain

  • The N-terminal LRR domain is preceded by a domain that is variable amongst LRX proteins, while a Cysrich hinge region separates the LRR and the extensin domains (Fig. 1a)

Read more

Summary

Introduction

Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The primary cell wall is composed of complex interlinked networks, mainly composed of cellulose, non-cellulosic and pectic polysaccharides such as xyloglucan and heteroxylans, and structural cell wall proteins. Genetic approaches have led to the identification of a number of receptor-like transmembrane proteins that perceive signals from the cell wall and transduce them to the cytoplasm. Wall-associated kinases have a cytoplasmic kinase domain and an extracellular domain

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call