Abstract

The generation of a specific cell shape requires differential growth, whereby specific regions of the cell expand more relative to others. The Arabidopsis crooked mutant exhibits aberrant cell shapes that develop because of mis-directed expansion, especially during a rapid growth phase. GFP-aided visualization of the F-actin cytoskeleton and the behavior of subcellular organelles in different cell-types in crooked and wild-type Arabidopsis revealed that localized expansion is promoted in cellular regions with fine F-actin arrays but is restricted in areas that maintain dense F-actin. This suggested that a spatiotemporal distinction between fine versus dense F-actin in a growing cell could determine the final shape of the cell. CROOKED was molecularly identified as the plant homolog of ARPC5, the smallest sub-unit of the ARP2/3 complex that in other organisms is renowned for its role in creating dendritic arrays of fine F-actin. Rescue of crooked phenotype by the human ortholog provides the first molecular evidence for the presence and functional conservation of the complex in higher plants. Our cell-biological and molecular characterization of CROOKED suggests a general actin-based mechanism for regulating differential growth and generating cell shape diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.