Abstract

The conserved oligomeric Golgi (COG) complex, which consists of eight subunits named COG1–COG8, is highly conserved with homologous subunits present in most eukaryotic species. In yeast and mammalian, the COG complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Although homologs of COG subunits have been identified in Arabidopsis, the functions of the complex and its subunits remain to be fully elucidated. In this study, we have utilized genetic and cytologic approaches to characterize the role of the COG6 subunit. We showed that a mutation in COG6 caused male transmission defect due to aberrant pollen tube growth. At the subcellular level, Golgi bodies exhibited altered morphology in cog6 pollen and cell wall components were incorrectly deposited in pollen tubes. COG6 fused to green fluorescent protein (GFP), which complemented the aberrant growth of cog6 pollen tubes, was localized to the Golgi apparatus. We propose that COG6, as a subunit of the COG complex, modulates Golgi morphology and vesicle trafficking homeostasis during pollen tube growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.