Abstract

Calmodulin-like (CML) proteins are major EF-hand-containing, calcium (Ca2+)-binding proteins with crucial roles in plant development and in coordinating plant stress tolerance. Given their abundance in plants, the properties of Ca2+ sensors and identification of novel target proteins of CMLs deserve special attention. To this end, we recombinantly produced and biochemically characterized CML36 from Arabidopsis thaliana We analyzed Ca2+ and Mg2+ binding to the individual EF-hands, observed metal-induced conformational changes, and identified a physiologically relevant target. CML36 possesses two high-affinity Ca2+/Mg2+ mixed binding sites and two low-affinity Ca2+-specific sites. Binding of Ca2+ induced an increase in the α-helical content and a conformational change that lead to the exposure of hydrophobic regions responsible for target protein recognition. Cation binding, either Ca2+ or Mg2+, stabilized the secondary and tertiary structures of CML36, guiding a large structural transition from a molten globule apo-state to a compact holoconformation. Importantly, through in vitro binding and activity assays, we showed that CML36 interacts directly with the regulative N terminus of the Arabidopsis plasma membrane Ca2+-ATPase isoform 8 (ACA8) and that this interaction stimulates ACA8 activity. Gene expression analysis revealed that CML36 and ACA8 are co-expressed mainly in inflorescences. Collectively, our results support a role for CML36 as a Ca2+ sensor that binds to and modulates ACA8, uncovering a possible involvement of the CML protein family in the modulation of plant-autoinhibited Ca2+ pumps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.