Abstract

In Arabidopsis, a dry stigma surface enables a gradual hydration of pollen grains by a controlled release of water. Occasionally the grains may be exposed to extreme precipitations that cause rapid water influx and swelling, eventually leading to pollen membrane rupture. In metazoans, calcium- and phospholipid-binding proteins, referred to as annexins, participate in the repair of plasma membrane damages. It remains unclear, however, how this process is conducted in plants. Here, we examined whether plant annexin 5 (ANN5), the most abundant member of the annexin family in pollen, is involved in the restoration of pollen membrane integrity. We analyzed the cellular dynamics of ANN5 in pollen grains undergoing hydration in favorable or stress conditions. We observed a transient association of ANN5 with the pollen membrane during in vitro hydration that did not occur in the pollen grains being hydrated on the stigma. To simulate a rainfall, we performed spraying of the pollinated stigma with deionized water that induced ANN5 accumulation at the pollen membrane. Interestingly, calcium or magnesium application affected pollen membrane properties differently, causing rupture or shrinkage of pollen membrane, respectively. Both treatments, however, induced ANN5 recruitment to the pollen membrane. Our data suggest a model in which ANN5 is involved in the maintenance of membrane integrity in pollen grains exposed to osmotic or ionic imbalances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call