Abstract

Soil salinity causes crop losses worldwide. Root hairs are the primary targets of salt stress, however, the signaling networks involved in the precise regulation of root hair growth and development by salinity are poorly understood. Here, we confirmed that salt stress inhibits the number and length of root hairs in Arabidopsis. We found that the master regulator of root hair development and growth, the RHD6 transcription factor, is involved in this process, as salt treatment largely compromised root hair overaccumulation in RHD6-overexpressing plants. Yeast-two-hybrid and co-immunoprecipitation analyses revealed that RHD6 physically interacts with ABF proteins, the master transcription factors in abscisic acid signaling, which is involved in tolerance to several stresses including salinity. Phenotypic analyses showed that ABF proteins, which function upstream of RHD6, positively modulate the salinity-induced inhibition of root hair development. Further analyses showed that ABF3 suppresses the transcriptional activation activity of RHD6, thereby regulating the expression of genes related to root hair development. Overexpression of ABF3 reduced the root hair-overgrowing phenotype of RHD6-overexpressing plants. Collectively, our results demonstrate an essential signaling module in which ABF proteins directly suppress the transcriptional activation activity of RHD6 to reduce the length and number of root hairs under salt stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.