Abstract
In general, speech is made with sequences of consonants (fricatives, nasals and stops), vowels and glides. The classification of the stop consonants remains one of the most challenging problems in speech recognition. In this paper, we propose a new approach based on the normalized energy in frequency bands in the release and closure phases in order to characterize and classify the Arabic stop consonants (/b/, /d/, /t/, /k/ and /q/) and to recognize the CV syllable. Classification experiments were performed using decision algorithms on stop consonants C and CV syllables extracted from an Arabic corpus. The results yielded to an overall stop consonants classification of 90.27% and syllables CV recognition upper than 90% for all stops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.