Abstract

Abstract As part of the US JGOFS Arabian Sea Process Study, we determined the abundance, size distributions and carbon biomass of autotrophic phytoplankton in the Arabian Sea during summer Southwest and fall Northeast Monsoon seasons of 1995 (R/V Thomas G. Thompson cruises TN 049 and TN 053). Flow cytometry of 60-ml samples was used to enumerate and determine scattering and fluorescence properties of Prochlorococcus sp., Synechococcus sp., and eukaryotic phytoplankton with cell equivalent spherical diameter up to 40 μm. Cellular forward light scattering was calibrated against Coulter size using 22 phytoplankton cultures spanning the size range 0.8–40 μm, grown exponentially in natural sunlight. The phytoplankton community structure was strongly linked to water-mass characteristics, and was affected by both intense monsoon-related environmental forcing and widespread and dynamic mesoscale structures; the magnitude of spatial variability was similar to that between seasons for all three phytoplankton groups. Prochlorococcus was numerically dominant in the more oligotrophic, stratified areas with surface nitrate concentrations below 0.1 μM and surface temperatures above 27°C. Its abundance was significantly greater during the NE Monsoon and was inversely correlated with the abundance of the two other groups. Synechococcus and eukaryotic phytoplankton cell concentrations covaried at most locations, were highest in areas of intense, monsoon-related mixing, and changed less between seasons than Prochlorococcus. The bulk of biomass of all three groups was located within the mixed layer. Only eukaryotes formed notable subsurface maxima at several offshore locations where Prochlorococcus dominated the mixed layer. Dramatically elevated eukaryotic phytoplankton concentrations in the nutrient-rich upwelling areas were due to the blooming of smaller ( 10 μm) nanoeukaryotes reached their greatest biomass contributions – up to 40% each – in the offshore oligotrophic locations. For the SW and NE Monsoon cruises, flow cytometrically-measured phytoplankton was estimated at 1.1 and 2.2 g C m−2 on average and comprised 33 and 38% of POC, respectively. Diel variability in cellular carbon content accounted for 52% of the observed variability in cellular carbon content for Prochlorococcus, 26% for Synechococcus, and 14% for eukaryotic phytoplankton cells at the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call