Abstract

Currently, liposomes have emerged as efficient and safer nano-carriers for targeted therapy in different cancers. This work aimed to employ PEGylated liposomal doxorubicin (Doxil®/PLD), modified with AR13 peptide, to target Muc1 on the surface of colon cancerous cells.We performed molecular docking and simulation studies (using Gromacs package) of AR13 peptide against Muc1 to analyze and visualize the peptide-Muc1 binding combination. For in vitro analysis, the AR13 peptide was post–inserted into Doxil® and verified by TLC, 1H NMR, and HPLC techniques. The zeta potential, TEM, release, cell uptake, competition assay, and cytotoxicity studies were performed. In vivo antitumor activities and survival analysis on mice bearing C26 colon carcinoma were studied.Results showed that after 100 ns simulation, a stable complex between AR13 and Muc1 formed, and molecular dynamics analysis confirmed this interaction. In vitro analysis demonstrated significant enhancement of cellular binding and cell uptake.The results of in vivo study on BALB/c mice bearing C26 colon carcinoma, revealed an extended survival time to 44 days and higher tumor growth inhibition compared to Doxil®. Thus, the AR13 peptide could be explored as a potent ligand for Muc1, improving therapeutic antitumor efficiency in colon cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call