Abstract

In this study, a robust estimation method for the first-order autocorrelation coefficient in the time series model following AR(l) process with additive outlier(AO) is investigated. We propose the L-type trimmed least squares estimation method using the preliminary estimator (PE) suggested by Rupport and Carroll (1980) in multiple regression model. In addition, using Mallows` weight function in order to down-weight the outlier of X-axis, the bounded-influence PE (BIPE) estimator is obtained and the mean squared error (MSE) performance of various estimators for autocorrelation coefficient are compared using Monte Carlo experiments. From the results of Monte-Carlo study, the efficiency of BIPE(LAD) estimator using the generalized-LAD to preliminary estimator performs well relative to other estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.