Abstract

We investigated the time-varying behaviour of the autoregressive (AR) parameters in a myoelectric (ME) signal detected during a linear force increasing contraction. The AR parameters of interest were the reflection coefficients, the AR model spectrum, and the prediction errors. We used well-conditioned ME signals for which the complete time record of the motor units firings was available. In addition, the influence of the recruitment of a new motor unit, the conduction velocity of action potentials, and additive broad-band noise were investigated using simulated ME signals. The simulated ME signals were constructed from a selected group of the available motor unit action potential trains. The results revealed that, as the contraction progressed, the AR parameters displayed a time-varying behavior which coincided with the recruitment of newly recruited motor units whose spectrum of the waveform differed from that of the rest of the ME signal. This property of the AR parameters was obscured by the presence of broad-band noise and low-amplitude motor unit action potentials, both of which are more pronounced during low-level force contractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.