Abstract
The present study reports the effects of 650-keV Ar2+ ion irradiation on the structural, optical, and device characteristics of Ru|Pt|n-GaN Schottky barrier diodes (SBDs). Ion irradiation induces the broadening of the GaN X-ray diffraction peaks due to induced structural deformities. The photoluminescence spectroscopy intensity decreases with the increase in the fluence of ions. The recombination of charge carriers induced by the geometrical distortions, and the formation of defects states, shifts the peak positions to shorter wavelengths. The electrical characteristics of these devices exhibit significant changes due to modification at the interface and charge transport properties after Ar2+ ion irradiation. The charge-transport properties are affected by these deformities at higher fluences and attributed to the contributions of various current conduction mechanisms, including defect-assisted tunnelling and generation-recombination (G-R) currents along with thermionic emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.