Abstract

We have modeled the gas-phase chemistry of a typical radio frequency CH4/Ar plasma used for the deposition of diamond and diamond-like carbon films. Our simulations show that the most abundant carbon containing radical is CH3 in pure methane discharges, but it is the carbon dimer C2 in discharges of methane highly diluted by argon. Thus we propose that the gaseous precursor of the film is CH3 in methane plasmas, and C2 in CH4/Ar plasmas. This proposal resolves outstanding discrepancies and is consistent with recent experiments demonstrating the deposition of diamond from hydrogen deficient plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.