Abstract

Millimeter-wave is the core technology to enable multi-Gbps throughput and ultra-low latency connectivity. But the devices need to operate at very high frequency and ultra-wide bandwidth: They consume more energy, dissipate more power, and subsequently heat up faster. Device overheating is a common concern of many users, and millimeter-wave would exacerbate the problem. In this work, we first thermally characterize millimeter-wave devices. Our measurements reveal that after only 10 s of data transfer at 1.9 Gbps bit-rate, the millimeter-wave antenna temperature reaches 68 °C; it reduces the link throughput by 21%, increases the standard deviation of throughput by 6×, and takes 130 s to dissipate the heat completely. Besides degrading the user experience, exposure to high device temperature also creates discomfort. Based on the measurement insights, we propose Aquilo, a temperature-aware, multi-antenna network scheduler. It maintains relatively high throughput performance but cools down the devices substantially. Our testbed experiments under both static and mobile conditions demonstrate that Aquilo achieves a median peak temperature only 0.5 °C to 2 °C above the optimal while sacrificing less than 10% of throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.