Abstract

Abstract The combination of layer resistivity and thickness in the so called Da-zarrouk parameters S (longitudinal conductance) and R (transverse resistance) have proved useful in the evaluation of the transmissivities of the aquifers around Owerri and environs. The area is underlain by the unconsolidated to semi-consolidated coastal Benin Formation. The surface direct current electrical resistivity method was used in the study. Seven Vertical Electrical Soundings (VES) data by the Schlumberger array was acquired in the area. A maximum current electrode spacing (AB) of 1000 m was used for data acquisition. Four of the soundings were carried out near existing boreholes. Computer modelled interpretative methods was utilized in processing the data. Results show that the depth to the water level is shallow around Ife and Egbu areas with a mean depth of 30 m. Semi-deep aquifers were encountered around Okpalla and AVU areas with a mean depth of 90 m while very deep aquifers were sensed around Owerri and Obinze areas with a mean depth of 125 m. Aquifer thicknesses in the study area range from 8 m at Ife and 117 m at Owerri. The diagnostic Kσ = constant value have proved so useful in calculating transmisivities and hydraulic conductivities of all the sounding locations including areas where no boreholes exist. Hydraulic conductivity varies between 6.19m/day at Ife and 24.7 m/day at Obinze. Transmissivity values also very between 51.39 m2/day at Ife and 1379.56 m2/day at Owerri. It is hoped that the results would help in long term planning of groundwater exploitation schemes within the study area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.