Abstract
AbstractUnderstanding the detailed spatial variation of hydraulic properties in the subsurface has been the subject of intensive research over the past three decades. A recently developed approach to characterize subsurface properties is hydraulic tomography, in which a series of pumping tests are jointly inverted using a heterogeneous numerical model. Recently, Cardiff et al. (2013) proposed a modified tomography approach named Oscillatory Hydraulic Tomography (OHT), in which periodic pumping signals of different frequencies serve as the aquifer stimulation, and pressure responses are recorded at observation locations for tomographic analysis. Its key advantages over traditional hydraulic tomography are that: (1) there is no net injection or extraction of water, and (2) the impulse (an oscillatory signal of known frequency) is easily extracted from noisy data. However, OHT has only been evaluated through numerical experiments to date. In this work, we evaluate OHT performance by attempting to image known heterogeneities in a synthetic aquifer. An instrumented laboratory sandbox is filled with material of known hydraulic properties, and we measure aquifer responses due to oscillatory pumping stimulations at periods of 2, 5, 10, and 20 s. Pressure oscillation time series are processed through Fourier Transforms and inverted tomographically to obtain estimates of aquifer heterogeneity, using a fast, steady‐periodic groundwater flow model. We show that OHT is able to provide robust estimates of aquifer hydraulic conductivity even in cases where relatively few pumping tests and observation locations are available. The use of multiple stimulation frequencies is also shown to improve imaging results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.