Abstract

Many geophysical methods have been applied to locate groundwater in Nigeria’s rural and urban villages. Locating groundwater in low permeability formations like shales and siltstones is even more challenging due to the difficulty of mapping fracture zones within these formations. The fracture zones serve as potential aquifers in low permeability formations and have been the object of groundwater search in shales, siltstones and other low permeability formations. The electrical resistivity method has proven helpful in fracture mapping within low permeability formations due to the existing resistivity contrast usually observed between the fractured and non-fractured sections in the Shales and Siltstones. Three vertical electrical geosounding datasets (VES 1, VES 2 and VES 3) were acquired in the Schlumberger configuration, using a maximum current electrode spacing of 200m to delineate the fracture zones based on their electrical resistivities. The acquired datasets were processed and modelled using IP12 Win software, while the processed datasets were correlated with local geology to estimate the depths of the fractured shales in the area. Results show five modelled geo-electric layers with depths to the fractured shales ranging from 17-25m, while aquifer thicknesses range from 7 to 12m. Aquifer resistivities range from 58 - 115 ohm-m. The curves are primarily of the QH type. One of the Vertical Electrical Sounding Data points (VES 2) encountered an anomalously low resistivity zone at a depth range of 5 to 8m which was interpreted as a galena lode. The low resistivity zone has been confirmed through exploratory drilling to tie with Lead-Zinc lodes at a depth of 8m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.