Abstract

Abstract. The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface–subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate–siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water–rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.

Highlights

  • Near-surface groundwater reservoirs are increasingly threatened by anthropogenic impact, like the intensification of agricultural land use and water production, while their ecological functioning is still rather unexplored

  • Vulnerability studies typically evaluate the variable interplay of surface factors and subsurface factors in a thorough way, but disregard the resulting groundwater quality

  • By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow

Read more

Summary

Introduction

Near-surface groundwater reservoirs are increasingly threatened by anthropogenic impact, like the intensification of agricultural land use and water production, while their ecological functioning is still rather unexplored. Infiltrating precipitation, as the main component of recharge of the surface near groundwater systems, first passes the soils. The residence time of the percolating water in the soils as well as in the unsaturated and saturated zones regulates the chemical and biological quality by the extent to which the partial equilibrium of the rate-limited dissolution, retardation and release processes is achieved (Weigand and Totsche, 1998; Münch et al, 2002). Residence times and groundwater quality depend on various surface factors (duration and intensity of precipitation, land management/vegetation, presence of macropores) and subsurface factors (i.e. soil thickness, hydraulic parameters and preferential flow paths)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.