Abstract

All‐inorganic perovskite CsPbBr3 (CPB) nanocrystals (NCs) are not widely applied in aqueous environments due to their readily decomposable nature. Therefore, the aqueous‐phase preparation of CPB NCs has been a considerable challenge. In this work, a feasible method is proposed for preparing aqueous‐phase core–shell CPB nanorods (NRs) encapsulated with polydopamine (PDA) by employing a multifunctional additive cesium trifluoroacetate (Cs‐TFA). Highly luminescent TFA‐CPB NRs are obtained via a chemical transformation of Cs4PbBr6 NCs in water. Subsequently, PDA constitutes a robust shell on the surface of TFA‐CPB NRs through the covalent oxidative polymerization, which effectively reduces the original dynamic properties of surface ligands, retards the decomposition of ligands and inhibits the leakage of Pb2+ ions. The results demonstrate that the fluorescence intensity of TFA‐CPB@PDA NRs maintains 49.3% of the initial intensity after 136 days. Meanwhile, the NRs exhibit low cytotoxicity, and the cell viability remains at 80% when the concentration of the NRs is 200 μg mL−1. The reliable preparation of aqueous‐phase core–shell perovskite NRs (PNRs) will facilitate their development in many fields, such as materials science, biology, medicine, and their applications in aqueous environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.