Abstract

Terpene-derived acids formed through the atmospheric gas-phase oxidation of terpenes are able to efficiently undergo a phase transfer into the aqueous phase. The subsequent aqueous-phase oxidation of such compounds has not been intensely studied. Accordingly, the aqueous-phase second-order rate constants of the oxidation reactions of cis-pinonic acid (CPA) and (+)-camphoric acid (+CA) with hydroxyl radicals (•OH), nitrate radicals (NO3•), and sulfate radicals (SO4•-) were investigated as a function of temperature and pH in the present study. For CPA and +CA the following •OH reaction rate constants at T = 298 K are determined: ksecond(CPA, pH<2) = (2.8 ± 0.1) × 109 L mol-1 s-1, ksecond(CPA, pH>8) = (2.7 ± 0.3) × 109 L mol-1 s-1, ksecond(+CA, pH<2) = (2.1 ± 0.1) × 109 L mol-1 s-1, ksecond(+CA, pH=5.3) = (2.7 ± 0.3) × 109 L mol-1 s-1, ksecond(+CA, pH>8) = (2.7 ± 0.1) × 109 L mol-1 s-1. In order to assess the atmospheric impact of the aqueous-phase oxidation of such compounds, atmospheric aqueous-phase lifetimes were calculated for two model scenarios based on CAPRAM 3.0i. The aqueous-phase oxidation under remote conditions emerges to be the most favored pathway with lifetimes of 5 ± 1 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.