Abstract

The aqueous-phase adsorption and desorption of toluene in Filtrasorb-300 (F-300) activated carbon fixed-bed adsorbers at 25°C were investigated under a wide range of operating conditions. Process dynamics were described successfully using a homogeneous surface diffusion model with external mass transfer and a surface diffusion coefficient that increases with surface coverage. The model also accounted for irreversible toluene adsorption on F-300. The adsorption isotherm parameters, the surface diffusion coefficient and its dependence on surface concentration were determined independently in batch adsorption studies. The value of the external mass transfer coefficient as a function of the Reynolds number was determined by fitting the adsorption breakthrough curves. The fraction of irreversible toluene adsorption as a function of initial surface loading was found from the desorption breakthrough curves. Use of these independently measured equilibrium and transport parameters in the model permitted the successful description of experimental rates of toluene adsorption and desorption in F-300 fixed beds under a variety of operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.