Abstract

SummaryThe development of low-cost and sustainable grid energy storage is urgently needed to accommodate the growing proportion of intermittent renewables in the global energy mix. Aqueous zinc-ion batteries are promising candidates to provide grid storage due to their inherent safety, scalability, and economic viability. Organic cathode materials are especially advantageous for use in zinc-ion batteries as they can be synthesized using scalable processes from inexpensive starting materials and have potential for biodegradation at their end of life. Strategies for designing organic cathode materials for rechargeable zinc-ion batteries targeting grid applications will be discussed in detail. Specifically, we emphasize the importance of cost analysis, synthetic simplicity, end-of-life scenarios, areal loading of active material, and long-term stability to materials design. We highlight the strengths and challenges of present zinc-organic research in the context of our design principles, and provide opportunities and considerations for future electrode design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.