Abstract

The partitioning of salts in aqueous two-phase systems formed from polyethylene glycol, dextran, and water produces an electrostatic potential difference between the phases which influences the partitioning of proteins and other biomolecules. We study the partitioning of, separately, NaCl, NaH 2 PO 4 , and NaHSO 4 in such systems, as well as the resulting electrostatic potential differences. Polymer concentrations were measured by liquid chromatography and ion concentrations by atomic absorption or inductively coupled emission spectroscopy. A combination of the UNIQUAC Debye-Huckel, and Broensted-Guggenheim equations, after accounting for differences in the standard states, resulted in a thermodynamic model that correlates the concentrations of all species (polymers, ions, and water) and allows calculation of the resulting electrostatic potential difference. At comparable concentrations, NaHSO 4 produces the largest electrostatic potential difference between the phases and NaCl the smallest

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.