Abstract

A facile method was developed to produce porous alginate beads (PABs) with a controllable interconnected porous structure with aqueous two phase (ATPS) emulsions as template for 3D cell culture. ATPS emulsions, containing two biocompatible immiscible aqueous phases of cell/dextran (Dex) mixture and alginate (Alg)/polyethylene glycol (PEG) mixture and stabilized by mPEG-BSA particles, were introduced to form PABs. The pore size of PABs could be controlled by changing the emulsification frequency and the volume ratio between the ATPS emulsions and PEG-Alg solution. Moreover, cells could be directly encapsulated in the interconnected pores due to the excellent biocompatibility of ATPS. HeLa and human liver cancer cells encapsulated in the PABs present stronger cell activity (>95 %), proliferation, and enhanced functions compared with the cells encapsulated in general alginate beads (GABs). It is believed that the PABs is a promising microcarriers for 3D cell culture in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.