Abstract

C-phycocyanin (C-PC) and allophycocyanin (APC) with similar molecular structures were separated, respectively from Spirulina platensis cell homogenate by single extraction and multi-stage countercurrent distribution (CCD) using an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and potassium phosphate (KPi). The partition coefficients of C-PC and APC were 10.64 and 0.57, respectively, and the extraction selectivity of C-PC was 18.67 from 0.5% (w/w) S. platensis crude extract by single extraction using PEG6000/KPi ATPS (pH 7.0) with 34% (w/w) tie line length (TLL). In ten-stage CCD under the same ATPS extraction condition with 2% (w/w) S. platensis crude extract, the purity of C-PC increased nearly twice and the recovery of APC increased more than nine-fold compared with single extraction. The results displayed that most C-PC (82.1%) followed the mobile phase was enriched in the top phases of the last three tubes, while more APC (41%) remained in the stationary phase was enriched in the bottom phases of the first three tubes in the ten-stage CCD. Hence, aqueous two-phase CCD technology provided an effective and low cost method for C-PC and APC separation from S. platensis cell homogenate directly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call